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XTIV. On the Singular Solutions of Simultancous Ordinary Differential Equations
and the Theory of Congruencies.

By A. C. Dixox, M.A., Fellow of Trinity College, Cambridge, Professor of
Mathematics in Queen’s College, Galway.

Communicated by J. W. L. GraisuER, Sc. D., F.R.S.
Received June 7, -Read June 21, 1894.

InTRODUCTION,

§ 1. THIs paper is an attempt to show how the singular solutions of simultaneous
ordinary differential equations are to be found either from a complete primitive or
from the differential equations.

The latter question has been treated by Maver (‘Math. Aun., vol. 22, p. 368)
in a somewhat different way, but with the same result. He also gives a reference to
a paper in Polish by ZArA¢zKowsKT (summarized in vol. 9 of the ¢ Jahrbuch der Fort-
schritte der Mathematik), and to one by SERRET in vol. 18 of ¢ LiouviLLe's Journal.’

The general result is that there may be as many forms of solution as there are
variables (the differential equations being of the first order, to which they may
always be reduced). Each form is derived from the one before by the process of
finding the envelope, and each contains fewer arbitrary constants by one than the
form from which it is directly derived.

The general theory is given in §§ 2, 3, and in §4 it is shown how the singular
solutions are to be formed from the differential equations themselves. In §§5-9
the theory is connected with that of consecutive solutions belonging to the complete
primitive. §§ 10-13 are taken up with geometrical interpretations relating to plane
curves and also to curves in space of n + 1 dimensions, n + 1 being the number of
variables. In §§ 14-16 the case is discussed in which a system of singular solutions
is included in a former system or in the complete primitive.

The rest of the paper contains the application of the theory to certain examples.
The first example (§§17-21) is the case of the lines in two osculating planes of a
twisted curve, and in particular of a twisted cubic. The particular example is given
by Maver and SErrET. The second (§§ 22-26) is that of the congruency of common
tangents to two quadric surfaces, and generally (§§27-38) of the bitangents to any
surface. The third (§§ 39-50) is that of the essentially different kind of congruency

3 X 2 25.8.95

e]
The Royal Society is collaborating with JSTOR to digitize, preserve, and extend access to éfr )2

Philosophical Transactions of the Royal Society of London. A. STOR ®
WWWw.jstor.org


http://rsta.royalsocietypublishing.org/

/an
A

A

THE ROYAL A
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

)
A

fa \

/,
/

S

a

THE ROYAL
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

Downloaded from rsta.royalsocietypublishing.org

524 PROFESSOR A. . DIXON ON THE SINGULAR SOLUTIONS

which consists of the inflexional tangents to a surface. It seems natural to call
these two kinds of congruency bitangential and inflezional respectively. The fourth
example (§§51, 52) is that of a system of conics touching six planes. The fifth
(§§ 53--56) is that of a doably infinite system of parabolas in one plane, the differential
equation being a case of an extension of Crairaur’s form y = px 4 f(p), which is
explained in §§ 53-55.

General Theory. (§§2, 3.)

§ 2. Suppose that we have n ordinary simultaneous differential equations, involving
one independent variable #, and n dependent variables v, vy, . . . ¥, with their first
differential coefficients p,, py, + . . P

The “complete ” solution of such a system will consist of 7 equations involving
X, Yy, Ygs - - - Yu and 1 arbitrary constants, ¢, ¢y, . . . ¢

Suppose that such a solution is known. The question then arises, “ Are there any
other solutions which it does not include ?” This is the question that we now seek
to answer.

If we take the differential equations in the form

Fro Yy Yoo Y Prse ) =0 (r=1,2...m) . . . . (L)

and the integrals as
Fo(x, vyoo Yoy )=0 (r=1,2...0) . . . . (IL),

we have by differentiating

OF, oF, or, o
aa+f’lay;+°"+1”"a =0 (r=1,2. ... (IIL).
Let the system
Ny ooy) =0 (r=1L2...0) . . . . L (Iv.)

be an integral of (L.).
From (LV.) we derive

N, o\,

ar TP, t o +p,z =0 (r=1,2...2) . . . . (V..

az/

By eliminating py, . . . p, from (IIL.) and (V.) we find such values of ¢,, ¢, ... ¢, as
will make (111.) and (V) equivalent® ; but it the values of py,...p, given by (IIL)

* This argument must be somewhat modified if the equations (ITL.) are not enough to give the
values of ¢}, ¢y, . . . cu. Suppose that m independent equations, and no more, can be formed from (IIL)
not containing the quantitics ¢;, . ..c,. These equations must be included in the system (1.), and are
therefore equally satisfied (possibly in virtue of (IV.)) by the valnes of p;, ... pu given by (V.).

The other n — m equations of the system (IT1.) may then be transformed by substitution of the values
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OF SIMULTANEOUS ORDINARY DIFFERENTIAL EQUATIONS. 525

and (V.) respectively are substituted in (I.), the results are respectively equivalent to

(IL.) and (IV.). Hence (IL.) and (IV.) are also made equivalent, and therefore (IV.)

may be derived from (1I.) by substituting appropriate functions of x for ¢y, ... ¢,
Hence, by subtracting (III.) from the derivative of (II.), we have

%@1_@:‘:0 (r=12...n0. . . . . . . (VL)

s=1 Oc dx

Thus, unless ¢, ¢, . .. ¢, are all constants,

OF,Fy... 1)
e oy =0 (VID).

§ 8. The equations (IL.) and (VIL) may be considered as defining , %, ..., in

in terms of ¢, ¢,...c,. We thus have n — 1 differential equations connecting the
n quantities ¢,,. .. ¢, Their complete primitive will involve # — 1 arbitrary constants,
and by eliminating ¢, ... ¢, from (II.) and (VIL) and this complete primitive we
have a solution of (1.) involving n — 1 arbitrary constants, which we may call the
Jirst singular solution of (I.)

The differential equations given by (VI.) may have a first singular solution involving
n — 2 arbitrary constants, and from this we should derive the second singular solution
of (L.) by eliminating ¢, ... ¢, as before.

This process may go on till we have n singular solutions, with n — 1,n—2...2,1,0
arbitrary constants respectively, or it may stop at any stage. If, for instance, the
left-hand side of the equation (VIL) were an absolute constant, there would be no
singular solution at all.

Formation of Singular Solutions from the Dyfferential Equations.

§ 4. The equation (VIL.) is the condition that two solutions of (II.) when solved for
¢y, Cy - + - ¢, shall coincide. But, generally, when this happens, the equations (IIL.)
give coincident sets of values for p;, p, . . . p..

of p, ... pufrom (V.), and become relations (A) connecting c¢;, ¢, ... ¢x with @, and v, ¥y, . .. yu which
are given as functions of @ by (IV.).

Now by substituting the values of p; . .. p, from (IIL.) in (I.), we have integral equations which must
be included in (IL.).

The number of these equations will be = — m, because m ave already satisfied identically.

These equations are also satisfied if (A) and (IV.) are; for the values of p, ... p, given by (III.) and
(V.) are then the same and those given by (V.) satisfy (L).

The system (II.) will supply exactly m further equations which in combination with (A) and (IV.)
give the values of ¢, ¢,,...cs in terms of a.
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526 PROFESSOR A. C. DIXON ON THE SINGULAR SOLUTIONS

If not, that is if the two sets of values of p,, . . . are different, all the determinants
of the matrix

or,  on, o, -
ow ’ oy, T a.(;/n
oF,  oF,

or, oF,

must vanish (compare § 11, below.)

The equations (IIL) are then not enough to determine p;, p,...p, and the
conditions (VL) do not ensure that the system of equations found by the above
process will satisfy (I.) and be a solution at all. A

In general, then, for a singular solution, the two sets of values of py, p, . .. p, are
coincident. But these are given by the equations (L.).

Hence generally the equation

a(f]?/ﬂ’ ° fﬁ) s
vl de g 00 (VIIL)*
a (pbpzl c 'Pn) ( )

is satisfied by a singular solution.

We have, therefore, the following process for finding the singular solution from the
differential equations (I.) :— ’

Form the equation (VIIL) and let E = 0 be the result of eliminating py, pg, . . . pa
from (1.) and (VIIL.). Suppose that ¢ is a factor of E such that the equation
d¢/dx = 0 can be deduced, by substitution without differentiating, from ¢ == 0 and
(I.). Then, by treating ¢ = 0 as if it were a particular first integralt of (I.), which is
now allowable, reduce (L.) to a system of n — 1 differential equations in n variables.
The complete integral of this system belongs to the first singular solution of (I.). If
¢ is the only factor of E that satisfies the condition of being an integral, then it yields
the whole of the first singular solution.

The first singular solution of the new system of n — 1 equations gives the second
singular solution of the original system of n equations and so on (see also § 15,

below).

* MAvER finds this equation as the condition that the second and following differential coefficients, as
given by the equations (1.), should be indeterminate, and thus shows that (VIIL) must always be
. satisfied by a singular solution.

+ If the phrase “first integral ” is restricted to such as involve only one arbitrary constant, we may
use “singular first integral”” for such an equation as ¢ = 0 is here supposed to be.
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OF SIMULTANEOUS ORDINARY DIFFERENTIAL EQUATIONS. 527

Analytical Connection of Differeni Solutions. (§§ 5~9.)

§ 5. Let us write J for o (f, /o . - - f0)/0 (P, Pay - - - pu) and A}, Ny, . . .\, for the
minors of 9f,/0p,, 0f,/0py, . . . Of,/0p, in J.

The equations f; = 0, fo,=0,.../f,=0,J =0 give p;, Py, . . . P, ¥» as functions
of @, yy, . . . Yu_y,, and, for the second singular solution, we have to suppose that two
solutions coincide, that is, we put

O (S to S ) (Pr pos - pu ) =0

Since J = 0, this equation may be reduced, by multiplication by X,, to
/o oJ oJ 0T\ O(fosSo oS
(a2t g son T = O

Now, y, may equally well be replaced by v, 4, .. ., or y,_;, so that the condition
sought is given by the first factor, which we shall call J -

The equations fi=0,...f, =0, J =0, J, =0 give pj, Py, . . . Py Yuc1, Yu 88
functions of @, ¥, . . . Yu—s, and, if the values of p,_,, p,, given by differentiating those
of Y,_1, Yu agree with the values given by the solution of the equations, we are to find
the second singular solution by integrating the equations that give p,, . . . p,_a.

To find the third singular solution, we have to make the system f/; =0, ... f, =0,
J =0, J, = 0 have equal roots. The condition for this is found in the same way*
to be

8(114 é)—!l]_
Xlé}i +>\26P2 + +}\zan

and so we may pass on to the other singular solutions, if any.
o . .
§ 6. AsJ =\ Sf,% + )\2 af" + R N 5‘5, we wmay write for the integrals that

have to be taken to g1ve the 7™ singular solution

0 1<
<z)\ 5M> jn = (). (s =1,2,... l)

* The condition is 5
(flr Jz c fm J, J]) =
a(.pl’ Pa o Pus Yuo yn—-l)

Multiplied by A, this becomes

L, 00 O(fr - Jumu 4,90 .
a]’! a(}’l core pn—]’ ym y'n,--‘l)

The second factor, being unsymmetrical, is irrelevant.
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528 PROFESSOR A. C. DIXON ON THE SINGULAR SOLUTIONS

We have also identically
0 _ |
<§:>\“é}_)>f;=0 (2’:192,--.7’1,-—1),
and therefore

o\
<2x a}) £=o.
Thus

\

ERS . .
(zxgﬁ) (Afi+ Ayfs+ ...+ A L) =0,

where A, A,. .. A, are arbitrary functions.

These may be so chosen that SAf is the eliminant of £, fo. . ./, with respect to
P+« P We will call this eliminant P;; it does not involve p, . . . p,.

The equations then become

2\ o
(M Pi=0 (s=12...0)

that is to say

o \¢
<:o\p—1> P=0 (s=1,2,...%).

Thus the equation P, = 0 gives = 4 1 coincident values of p,. The same holds
for pg, Pg, .+ . P

If we take a system of values of «, y,,. ..y, such that s consecutive members *
of the #™ singular system of solutions are satisfied, then s — 1 consecutive members
of the (» 4+ 1) will be satisfied, s — 2 of the (r 4 2)™ and so on to the (r 4 s — 1),
after which none are satisfied. Also s -4 1 of the (» — 1)™ system will be satisfied,
s+ 2 of the (» — 2)™ and so on, and lastly s 4 # of the complete primitive system.

§ 7. The second singular solution of (I.) is the first of (VL) and (VIL) Now
by (VL) the ratios de, :dc,:. .. :dc, are given rationally in terms of ¢, ¢,. . . ¢,
and certain other variables w, #, ..., which are connected with ¢, ...¢, by the
equations (II.) and (VII.) The condition that (IL) and (VIL) shall have two
consecutive solutions is

Oty ¥ )
a (w’ ?/1’ A y“) o ’
Q being written for the left-hand side of (VIL.).

This equation we may write

0

0 0 ‘
(a,_i_pl.a;l_}_pgé?/z-’- ...>Q__0 or AQ =0,

* Different members of the system are got by giving different sets of values to the arbitrary
constants.
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OF SIMULTANEOUS ORDINARY DIFFERENTIAL EQUATIONS. 529

where p), py, . . . p, have the values given by the equations (IIL), ana ¢;, ¢,. . . are
treated as constants in the differentiation.
Since O = 0, we may use instead of the operator A, another, V, such that

de, 0 de, O
| V=two Toma,t
for AQ 4 VQ = 0! ‘

By comparing VQ = 0 with (V1.), we see that all the determinants of the matrix

30 AF, o, oF,
A T T
00 oK,

P é-c-;’

00 oF,

ey ® 0o 0

vanish.

§ 8. For the third singular solution we take the further integral equation A?Q = 0
or V?Q = 0, which forms are equivalent, since already Q =0, AQ = 0. The argu-
ment is the same as in §6, and may be carried on till the last singular solution is
reached.

The equations Q =0=VQ =V?Q =...=2V"'0, which yield the +** singular
solution, show that the equations F;, =0=F,=F,=...=TF,, when solved for
Ciy Coy « - « Gy have 7 4 1 coincident solutions.

§9. The equations in the other form, viz, Q =0, AQ =0... A" 0 =0, show
that the system

F=0=F,=...=F,=0

is satisfied by » 4 1 consecutive sets of values of z, ¥, . .. ¥
For suppose E to be the eliminant of F,, F, ... Q with respect to ¢;, . ... c, we
have then an identity

E=AF +AF, +...+4F +Bo.

Differentiate partially as to ¢, ¢, . . . ¢, in turn, and we have
o0 n oF, oB n 0A,
puintn s S | i 5 - —_— ¢
B 2 -+ iIA,. e = T ans — y:le. %, (s=1,2.. n)

Eliminating A,, . . . A, on the left-hand side, we find

O(Q,F,...F) OB, F,...F) » . F.)
A L) G R ZRLE DN )
0 (e, ...cp) 0 (e e..t,) —_ O (e t)
MDCCCXCV.—A. 3 Y -

0(A, Ty ...

+AQ0=—-0
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530 PROFESSOR A. €. DIXON ON THE SINGULAR SOLUTIONS

Now, in general, the coefficient of B on the left does not wvanish when
Q=0=F=...=F, and therefore B must vanish for such values, and must be
of the form

CF 4+ CF, 4+ ...+ Ca.

Thus with a slight change in the meaning of A, A,. . .,
E=0C0+AF +...+ AN,

Now, AF, = 0= AF,=... identically, and Q =0,A0=0... A" Q=0 for
systems of values that satisfy one of the ™ system of singular solutions. Hence in
such a case

E=0,AE=0...AE =0,

and the number of consecutive solutions of the equations

E=0=F=F=...=F,isr+ L

G'eometrical Interpretations.  (§§10--18.)

§ 10. The geometrical application of the above theory to curves in space of n 4 1
dimensions is easy.

The equations (IL.) may be taken to represent a series of curves (that is, singly
infinite continuous series of points) in such space. Through any point a certain
number, 7, of such curves may be drawn, 7 being the number of solutions of (II.)
when solved for ¢, ¢y, . . . C

At every point such a curve is met by ¢ — 1 other curves of the system, and at
certain points one of these 7 ~— 1 curves coincides with it.

The direction of the tangent to such a curve is given by the equation (L) or (ITT.).

The first singular solution is the envelope of a series of curves of the system, each
of which meets the consecutive one, and the locus of all such envelopes is the surface
(n?¥ infinite series of points) whose equation is E = 0 (see § 4).

In general, the 7 singular solution is the envelope of a series of curves belonging
to the (r — 1)™ singular system, and such that each meets the consecutive one; the
locus of such envelopes is an (n — » 4 1) infinite continuous series of points at
each of which 7 4 1 consecutive curves of the original system meet, as also do
7 — s 4 1 of the s® singular system. All the successive singular curves touch the
original curve. .

§11. If every curve of the first system (IL.) has a node, the equation (VIL) will be
satisfied at every point of the node locus, but (VIIL) will not (compare § 4). If
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every curve has a cusp (VIL) and (VIIL.) will be satisfied by the equation to the
cusp locus, but it will not fulfil the condition of being a first integral. If different
curves of the system touch, the tac-locus will satisfy the equation (VIIL) but not
(VIL). AIll this is exactly parallel to the known theory of single differential equations
of the first order.

§ 12. There is also an application to plane curves.

Suppose that the differential equations (I.) include the followmg e

Pr=¥Yp Pa=Ys .+ Pre1 = Y

Then the system (I.) simply reduces to an equation of the n™ order and its n first
integrals make up the system (IL) from which the singular solutions are derived.
If we write the differential equation

(@ y pope- - pa) =0,
putting y for v, then the equation (VIII.) becomes
a./,/apu = 0,

and this is the first integral (if it is one) from which the singular solutions are
derived.

The final integral, found by eliminating p,, p, . . . P._; from the system (IL), is the
equation to a system of curves, of which there are ¢ passing through any point and
having at that point contact of the (n -— 1)™ order with any assigned curve through
it ; all these have contact with one another of the (n — 1)™ order.

It two of them coincide, then a curve of the first singular system passes through
the point and has contact of the (n — 1)™ order with each of the 7 curves, and of the
n™ order with either of the two coincident ones.

A curve of the first singular system can be made to have contact of the (n — 2)%
order with any given curve at any point of it.

At any point of a curve of the second singular system three coincident curves of
the original system and two of the first singular system will satisfy the conditions
for contact with it of the orders n — 1, n — 2, respectively, and in each case the
contact will be actually of the #'* order, and so in general. The single curve of the
n'™ singular system is the envelope of those of the (n — 1)®, but it is more than
an ordinary envelope since its contact with each of the enveloped curves is of the

n'™ order.

§ 13. Tt should be noticed that if » — 1 of the dependent variables are eliminated
by differentiation from 7 simultaneous equations, the new equation, of order n, will be
satisfied by the same complete primitive, but that its singular solutions will generally

3Y2
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532 PROFESSOR A. C. DIXON ON THE SINGULAR SOLUTIONS

be different, since the singular solutions of the system do not furnish the same
values as the complete primitive for any but the first differential coefficients
(compare § 17 below).

Stngular Solutions Included in the Complete Primitive.  (§§ 14-16.)

§ 14. In certain cases it appears to be possible for the second singular solution to
exist without the first.

The ratios de; : de, . . . are given by the equations (VL) and involve x, y, 95 . . . Y,
which are given in terms of ¢;, ¢, . . . by the equations (1I.) and (VIL). If these are
not enough, that is to say, if @ can be expressed in terms of ¢, ¢, . . . ¢,, there is no
first singular solution.

For, from © = 0, may be deduced

L)
S d(},‘ = 0,
=1 a(),-
a further linear equation to be satisfied by de,, de,, . . . Thus either ¢}, ¢, . . . are all

constants, or the further integral equation

Oy, Ky Ky, Q)
O (e, €y v Cu)

:O,

whose left-hand side we shall call 0, is satistied.

In virtue of this equation @ = 0 is an integral of the equations (VL.). The values
of ,9, ...y, are given in terms of ¢, ... ¢, by (IL.) and @, = 0, and by substituting
these values in (V1) and finding » — 2 more integrals of the equations so derived,
we get the second singular solution, containing # — 2 arbitrary constants.

It would, perhaps, be better to say that in such a case the first singular solution is
included in the complete primitive, the values of the arbitrary constants being so
chosen as to satisfy the equation O = 0.

If Q, can be expressed as a function of ¢y, . . . ¢, only by means of the equations (IL.),

we must use the equation
D (¥, ... Ty, )
0 (CTR

=0, or ; =0,

to find the third singular solution, the second being included in the first.

Because 2, = 0, O, = 0 is an integral of (VL.), and because 0, =0, 2 =0 s an
integral. Therefore 7 — 3 integrals are still to be found.

This process may be carried on as far as is needed. Tt is also to be used if Q has
any factor that does not involve @, ¥, .. . ¥..*

* It sometimes happens that the equations (I.) and (V1L.) are enough to define @, ¥y, . . . v, in terms
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§ 15. The case of § 14 presents itself quite naturally if we start from the differen-
tial equations (L) instead of from the integrals (IL.). Let ¢, as before, be a factor
of E.

There is no apparent reason why the equation

d
=0
should follow algebraically from the system (I.) and the equation ¢ = 0.

Let K, = 0 be the result of eliminating p,, p,.. . p, from the system (I.) and the
equation d¢/dx = 0.

‘Let ¢, be a factor of E, and let E; = 0 be the result of eliminating p,, . . . p, from
the system (I.) and d¢,/dx = 0, and so on for ¢,, ¢, . . .

There is no apparent reason why any function in the series ¢, ¢, ¢, . . . should
vanish because all those before it are supposed to vanish. If one of them, say ¢,, does
satisfy this condition, then the equations

Pp=0=¢ =¢d,=...=¢,_,

are integrals of (L), and by using them and finding n — r other integrals, each con-
taining an arbitrary constant, we have a singular solution of the »™ system.

§ 16. Thus, as in the simpler case when there is a single equation of the first order,
the existence of singular solutions appears to be the rule if we consider the integrals,
the exception if we consider the differential equations, and in fact the number of
conditions for the absence of the first » singular solutions rises with » from the first
point of view, while the generality of the conditions for the existence of the (» + 1)®
from the second point of view decreases as r increases.

of ¢, ¢ . . . ¢,y bub that when @, y; . . . y, ave eliminated from (VI.) by this means, an integral equation
presents itself as an alternative to a differential equation. In such a case the integral equation will, of
course, relate to the second singular solution, for it contains no arbitrary constant.

Considered geometrically, the second singular solution thus arising will be enveloped by the complete
primitive, and, therefore, also by the first singular solution (for both lie on the locus of singular solutions
E = 0), although it may not be a singular solution of the differential equations (VL.).

A proper change in the forms of the arbitrary constants would reduce this case to the ordinary one.
If the integral factor is @1 ¢* ..., 6, ¢ ... being functions of ¢, ¢, ... then if in the system of
arbitrary constants we take 6" ¢ . . . instead of ¢,, the factor will disappear.

In fact the ordinary equation

Yy = px — Pg’
or any other, may be transformed so that its singular solution appears as an integral factor. . Put
y=1 (@ —2%

and we find
o= px+ PP =422 (- 1).
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534 PROFESSOR A. C. DIXON ON THE SINGULAR SOLUTIONS

Bxamples. 1. Congruency of Bitangents to o Torse. (§§ 17-19.)

§ 17. The simplest examples are equations of CLaTRAUT'S form, such as

Yy =P+ Pl pips + po
Yo = Pa® -+ PPy + P’

The complete primitive is

Yy = Cot + €,y + €}

yo= et el et C)}

The singular solutions are given by the equations

™

0= (2 + 2¢, + ¢) de, + (¢, + 1) dey,
0 =c,de, + (x + ¢, + 2¢,) de, } !

Hence, by eliminating w,

(¢y de, — ¢, dey) (de, + deg) = dey? .

This is also of CLAIRAUTS form, and its integral is
(L — p) ey — poy = p?
so that '
dey sdey it 1 —
Thus
(# 420+ ) (L= p)+p (e + 1) =0,
20) = — p? - p o= 4 pi,
20y = p¥ — pi,

i

dyy = (p — ) (& + 3+ @ — ap),
dyy = — p (p — ®

(7)-

(9).

(£)-

The equations () furnish the first singular solution. For the second we must

make (¢), as a quadratic in g, have equal roots, that is, we must put

Zpo= 0 Gy

2¢y = p (¢ + ¢y)-
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From these and the former equations we find

N RPN DI
Y = g5t — 507, .
Yo = — 370 ,

The equations () are the second singular solution.

We have here an example of what was pointed out in § 13. If we differentiate the
equations (a) and eliminate y, and p,, the resulting differential equation of the second
order is

2y, Jda? = 0.

This is satisfied by the complete primitive (8), but not by either of the singular
solutions.

§ 18. To find the singular solutions from the original equations, we have first to try
if the equation

@+ 2p, + Py P+l

=0 . . . . . . (0
Pas ©+ 2py +
can be used as a first integral.
The elimination of p, and p, gives
4y, + 1) + 2 (Y -+ y0) + 4ady, 4+ 18ay, (v, +9y) — 27Ty =0. . (4

It is easily verified that the derivative of this equation is an algebraical consequence
of it in virtue of the original differential equations.

§ 19. If we take @, y,, y, as Cartesian co-ordinates, the equations (8) represent a
line common to two osculating planes of the twisted cubic (n), ({) represent the conic
enveloped by this line when one of the osculating planes is fixed and the other
variable, and () is the equation to the torse enveloped by the osculating planes.

The General Case. (§§ 20, 21.)

§ 20. For any other twisted curve there is a similar theory.

Let
x4 Ay, + By + C=0

be the equation to an osculating plane, A, B, C being functions of a parameter p.
Let A,, B,, C, denote the same functions of p,, and let A’, be written for dA,/du,.
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536 PROFESSOR A. C. DIXON ON THE SINGULAR SOLUTIONS

Then by eliminating p, and p, from the four equations

14+ Ayp, + B p,=0, x4 Ay + By, + 0, =0,
14+ Aypy + Byp, =0, x4+ Ay 4 Byyy + Cy =0,

we have two relations which may be put in the Clairaut form

Y1 = P+ ¢y (P o)
Yy = Pt + P, (Ph_pz)'

§ 21. The complete primitive of these equations will represent the trace of any one
osculating plane on any other. The singular solutions are given by

’ ’ ’ d , , , l
(A]yl+Bly2+C‘);’%=0’ (A23/1+B2?/2+02)£ﬁ2—0.

de

For the first singular solution, either u, ov p, is to be equated to a constant, while
the other satisfies the equation

Ay, + By, + (U = 0.

The first singular solution is, therefore, the trace on any osculating plane of the
torse which they all envelope.
For the second we must suppose both u, and u, to satisfy the equation

Ay, + By, + O =
This gives the original curve, which is the cuspidal edge of the torse, together with
the nodal curve of the torse. The latter is not a solution of the differential equations.
Laxample 11. A Butangential Congruency. (§§ 22-26.)

§ 22. Take for another example the equations

(A+Bp*4-Cp?) {B (1, —p1x)* + C (vy—pyx)*—1} = {Bp, (y,—px)+Cp, (Yo—pa) %
(a4-bp*+cpy?) (b (1 —pe)+c (Y, —pyxe)—1} = {bp, (v, —px)+cpy (s —Py) 32,

These define y, — px, and y, — pyx as functions of p, and p,, and are, therefore, of
the Clairaut form, and may be integrated by substituting ¢, for p, and ¢, for p,,.

The integral in this form will represent four lines of a congruency, which consists
in fact of all the common tangents to the two quadric surfaces
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Ax? + By 4 Cy? =1,
ax® + by® + ¢y, = 1.
The first of the differential equations may be written

(A + Bp)® + Cpy’) (Ax® + By* + Cyy* — 1) = (Az + Byip, + Cyapo)®.
One of the integrals is, therefore,
(A 4 Be® 4 Ce?) (Aa? 4+ By + Cy,* — 1) = (Ax 4+ By,e; 4 Cyyo,)>
Thus, one of the equations that give the singular solutions is
(Bey dey + Ceydey) (Aa® + By *+ Cy,* — 1) = (By, de, + Cy, de,) (Az+ B@/lcl‘—}- Cyyey).

Unless
A +By? 4+ Cy? — 1 =0 and Az + Bye, + Cyye, = 0,

this may be reduced to

(Boy de, + Cey dey) (Aw + Byoy + Cyyey) = (Byy dey -+ Cyy dey) (A + Be? + Cey).

This last equation only contains @, y;, v, in the combinations ¥y, — ¢z, vy, — ¢y,
and the same will be true for the other equation of the same form that may be
derived from the second equation of the complete primitive.

From these two equations and those of the complete primitive we can eliminate
the ratio de, : dc,, and the expressions y; — ¢, and y, — c,, so0 as to have an equation
in ¢; and ¢y only. In accordance with § 14 the first singular solution thus given will
be included in the complete primitive, and the only proper first singular solutions are
given by taking

ax® + by® + cy,? — 1 =0 and ax + Dy ¢, + cyyc, = 0,
or

Ax® + By* +Cy2 — 1 = 0 and Az + Byye; + Cyye, = 0.

§ 23. In order to integrate for the first singular solution, it will be useful to
transform the equations to others in terms of ¢, , v, the values of pu which satisfy the
equation

Aaz? Bby,* Cey,? 1 0
a+pA b+ pB e+ puC  L4p
MDCCCXCV.—A., 3 Z
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The differential equations are then reduced® to

s (dt)* —0
(v =)t (L + 1) (a4 tA) b+ tB) (¢ +1C) — *

and ’
(dt)y? 0.

% (1 —v) (1+ 1) (& + tA) (b + tB) (¢ + £C)

If Az® 4+ By,® + Cy,* —— 1 = 0, then ¢, u, or v vanishes, say ¢; the first equation
is satisfied, and the second is reduced to

w (du)? _ v (dv)?
(1 + ) (¢ + wA) (b + «B) (¢ +uC) ~ (1 +v) (¢ + vA) (b + vB) (¢ + »C) "

The variables are here separated, so that we have one first singular solution.
The other is given by taking

ax® + by + eyt — 1 =0, that is ¢ = oo,
and
(duy? . (o
w(l + w) (@ + wA) (b +uB) (¢ + uC) ?;(1 + v) (@ + vA) (b + vB) (¢ + v0)

Either of these two solutions gives as the second singular solution

ax® + by,® + ey, — 1 =0,
Aa® 4 By* + Cy — 1 =0.

* Tn carrying out the reduction we may use the formula

A B Cod 1 @—A) (b =B) c=0) (=) (= w) (£ =0)
7dw+r,uA+ b+ pB +(; + ,uC—_l +u" (a4 pd) (b+ wB) (c+ pC) L+ ) (L +1) A +u)y (140

and differentiate it, considering x as constant and ¢, u, v, ¥, ¥ as functions of .
The expression

B Aa
a 4+ /lLA

o Bb o Ce
(dx)* + b+ B (dy)* + + A0 (dyy)?

m&y then be expressed in terms of df, du, dv by means of the formule for @, yy, y,, in terms of £, u, v.
It will thus be found that the equation

( Aax Bby,p, Ccyggog)2 _ ( Aaa? Bby,? + Cey? 1 )
a+/LA+b+MB ¢+ uC a+y,A+b+,u,B c+pC 14p
( Aa _Bbp? Cep,?
@ + pA b+,uB+C+,LLO

reduces to
dat?

S mn) (=) L+ 8 (a+ A) G+ B+ 0=
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§ 24. In order to find the other second singular solution let us write T, U,V for
(v — ) (1 41t) (@4 tA) (b 4 tB) (¢ + ¢C), and the two symmetrical expressions.
The differential equations, cleared of fractions, may then be written

~ ot (N 1+ 10w (2 =
va+vm<dt> +1Utu<dt> =0,

UV 4+ V(%) + U (g =0
The Jacobian of these expressions with respect to du/dt and dv/d¢ is
4 du/dt dv/dt T*UVE (v — u),
the square of which reduces to a constant multiple of
T*UV3uw (¢ — u) (¢ — v).

The factors of this expression are to be considered in turn.

Now the vanishing of such a factor as 1 + ¢ or & + At only causes two solutions of
the equations giving x, y,, ¥, in terms of ¢, u, v to coincide and only ylelds a solution
of the transformed, not of the original, equations.

The solutions given by supposing ¢, u or v to vanish or be infinite have been con-
sidered. The case when two of the three are equal is left.

If ¢t = u, then V =0, so that the equations give

TU (dv/dty®* = o.

Suppose first that » is constant.
It is easily found, as in the theory of confocal conicoids, that

02— (b —B)(c— C) L@+ A?) (¢ + Au) (@ + Av)
T Aa(aB — AD) (aC — Ae) (L4 +u) (14 v)

with like values for y,* and #,%.
Thus if ¢ = v and v is constant, , y,, ¥, are constant multiples of

a4+ At b+ Bt e+ Ci
14+¢ " 1T+t 1414

Hence y, and y, are linear functions of x and p,, p, are constants connected by a
single relation since they involve the arbitrary constant v. This solution is therefore
included in the complete primitive and must be the same as was rejected in § 22.

3z 2
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540 PROFESSOR A. C. DIXON ON THE SINGULAR SOLUTIONS

§25. If ¢t = » and v is not constant, then TU = 0 and v =¢, or else (1 + )
(¢ + At) (b+ Bt) (¢ + Ct) = 0.

The latter condition leads to no solution.

For the second singular solution we must take ¢ = » = v, whence we find that
each determinant of the matrix

art, Byt vyt 1 \
o, b, e, 1 ’ =0,
A, B, C 1

if @, B, y are the cube roots of

Ao = A (@0 — A0)
G=B) (=0 7

§ 26. In the geometrical interpretation it will fix the ideas if we suppose the two
conicoids projected into confocals.

The complete primitive represents their common tangents. The first singular
solution gives the geodesics on each that touch the other, and the second includes the
curve of intersection, which is the envelope of these geodesics.

The common tangent planes envelope a torse, whose generators will be common
tangent lines.  Of the four common tangents to the surfaces from any point of the

_torse, two will coincide with the generator of the torse. The equation to this torse is
t = u, and every generator of it is a generator of one confocal of the system. Thus
the equations ¢ = u, v = const. represent the different generators of this torse, and
their occurrence as an apparent singular solution is accounted for.

The cuspidal edge of this torse is a second singular solution, and is represented by
the equations

wrt, By, vy |
a b, c, 1T | =0.
A, B, C, 1

|
i
1]

S

The General Case. (§§ 27-38.)

§ 27. The straight lines
yo=cx4+b . . . . . . . . . (L)

yp==cx by . . . . . . o (2)

where the quantities by, by, ¢;, ¢, are connected by two relations, but are otherwise
arbitrary, form a congruency, and, if the relations are properly chosen, may be made
to represent any congruency.
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Thus the lines of any congruency satisfy differential equations of CrLAIRAUTS
form.
§ 28. If two consecutive lines meet, the equations (1) and (2), with

0=uwde, +dby . . . . . . . . . . (3),
0=uwdc,+db, . . . . . . . . . . (4),
must form a consistent system.
Hence
dbydey — dbyde, =0 . . . . . . . . . (B).

This equation gives two values for the ratio dc, : dc,, and shows, therefore, that
each line of the system meets two consecutive lines (SarmoN, “ Geometry of Three
Dimensions,” § 456).

We are supposing that b,, b, are regarded as functions of ¢, ¢,

§ 29. The elimination of ¢, ¢y, dc,, dc, from the equations (1), (2), (3), (4) will give
the equation to a surface, and the tangent plane to this surface will contain the line
(1), (2). TFor the equation to the tangent plane is found by eliminating de;, dc,, d\
from the differentials of (1) and (2) and of

T RN
.1,—}-861—1—)\801_0, R ()

b, b\

and substituting X —«, Y, —y,, Y, — y, for da, dy,, dy,. (6) and (7) are found
from (3) and (4) by the use of the undetermined multiplier \.
From (1) and (2) we have, considering ¢, and ¢, and therefore also b; and b, as
functions of a, v, ¥,
dy, = ¢, dx + x de, + db,,
dy, = ¢y de + x dey + db,,

and therefore in virtue of (6) and (7)
dy, + Ndy, = (¢; + \e,) da.
The equation to the tangent plane is therefore

Y=o X + MY, — X)) =y, — @ + (9, — )
= b, 4+ \b,,

and the tangent plane contains the line (1), (2).
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§80. Hence if the equation (5) gives unequal values for de, : de,, the lines of the
congruency are bitangents to the surfice whose equation is found by eliminating
¢y, €, N from (1), (2), (6), (7).

The singular solutions of the differential equations are the solutions of (5), that

18, of
gfd 2+<alﬁ ab>d dey — aﬁ de? = 0,

an ordinary differential equation connecting ¢, and ¢,, from the solution of which two
equations are to be found free from ¢, and ¢, by help of (1), (2), (6), and (7).
§ 31. The equation connecting A, ¢, ¢, is

oby /0b, abo> ob, — o

2 2
}\ + A \acl 06, o,
Now
dy, = ¢ dae + x de, + db,

4 ob ob
= ¢, dex — \ 55 de, + ,51 dey, by (6),

dy, = ¢, do 4+ %f—z de, — L ab dcz, by (7).
1

But if the differential equation is to be satisfied we must have

dy, = ¢, dx, dy, = ¢, dz,

and therefore

dey 4+ podey = 0,
where

N b, __ o

» D(’l ey’

so that p is the second root of the quadratic for A.  This can only hold at one point
of contact. _

§ 82. The integral of the equation (5) thus represents a double system of curves on
the surface, one curve being traced by each point of contact of the double tangent.
One curve is such that every tangent to it touches the surface again. This is the
first singular solution. The other curve is the locus of the other points of contact
of the tangents to the first and is not a solution.* One curve of each system goes

* In the case of § 17, this curve is found to be the straight line
= (¥ —2p) + 3 — 2,
vy = — ap® + 2,

and it is included in the complete primitive.
This will always happen if the surface is developable, for the first singular solution is then the section of
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through each point of the surface for every double tangent that can be drawn to touch
the surface there.

§33. As to the second singular solution, it is apparently given by the equation -
A = p (these are the two values given for — de,/dc,), or

ob, b, ob, ob,
(arl 80,) + 4 oy 5{’1 =0

If there is such a solution, which is not generally to be expected, it will represent
a curve on the surface every tangent to which meets the surface in four consecutive
points. Such tangents to the surface do not, however, generally envelope a curve
on it.

Case of a Nodal Curve. (§34.)

§ 84. The case of a surface having a nodal curve deserves consideration.

The tangent to such a curve meets the surface in four consecutive points, and is
therefore to be counted as a bitangent. The curve satisfies the same differential
equations as the bitangents, and the two values of x given by the elimination of the
differentials from (3) and (4) are equal, so that the curve is to be reckoned as derived
from the singular solution of (5), or as a second singular solution of (1) and (2).

But here a paradox presents itself. There are two tangent planes, and therefore
two values of \, whereas the equations (6) and (7) only yield one unless they are
identities.

We have then
O b
= oe, — Ocy
ob, _ ob,
B, T, O

Generally, these equations are not consistent, and therefore, generally, there will
be no nodal curve.

But on the other hand it will generally be possible to find a singly infinite series of
values of @, y,, ¥,, such that the equations (1) and (2), solved for b, by, ¢;, ¢,, shall
have two pairs of coincident solutions, and the corresponding curve will be a nodal
curve on the surface. :

The explanation of the paradox is that the surface will generally have other
bitangents as well as those belonging to the given congruency. These will form

the surface by a variable tangent plane and the tangent to this section touches the surface again at a point
on the generator along which the plane touches the surface. The generator is therefore the locus of the
second point of contact, and as it is the intersection of consecutive tangent planes it is included in the
complete primitive.
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another congruency, satisfying another pair of differential equations, which the nodal
curve also satisfies.

For instance, the normals to an ellipsoid are bitangents to the surface of centres,
but there are other bitangents, which form three more congruencies (see SALMON,
‘ Geometry of Three Dimensions,” § 511c). The double curve satisfies the differential
equations to the congruency of ‘synnormals.” v

If we reciprocate we find the same paradox in relation to the double tangent planes.
The line joining the points of contact will generally belong to the second congruency,
and the cuspidal edge of the torse which it generates will satisfy the differential
equations to this congruency, and belong to its second singular solution, the corre-
sponding first being included in the complete primitive.

Case of a Cuspidal or Parabolic Curve. (§35.)

§385. At first sight it would appear as if a cuspidal curve ought to satisfy the
differential equations to the bitangents, since any tangent to it meets the surface in
four consecutive points. But the consideration of the reciprocal surface shows that
the tangent planes drawn through such a tangent include three coincident ones, not
two distinet coincident pairs. The tangents to a cuspidal curve and the inflexional
tangents at parabolic points are therefore not to be counted as bitangents.

When a surface is varied continuously so that a nodal curve changes into a cuaspidal,
some of the bitangents become chords of the cuspidal curve, and among them are to
be reckoned the tangents to that curve. In the same way the inflexional tangents at
parabolic points are included in the congruency formed by the intersections of tangent
planes at pairs of parabolic points. Thus in a sense the congruency of chords of the
cuspidal curve, and that of double tangents to the torse enveloped by the tangent
planes at parabolic points, are limiting forms of bitangential congruencies belonging
to the surface, though they cannot be considered as true bitangential congruencies
belonging to it.

Digression on a Certain Singularity of Swrfuces.  (§§ 36, 37.)

§ 36. If, however, the curve is both cuspidal and inflexional, in a sense which we
shall shortly explain, the tangents to it are true bitangents to the surface.

If we suppose the inflexional tangent at each parabolic point to coincide with the
tangent to the parabolic curve, then that curve must be plane or else a double curve
on the surface. For the tangent plane at each parabolic point coincides with that at
the consecutive point along the inflexional tangent, and hence the tangent plane is the
same all along the parabolic curve. A double curve will, however, satisfy the con-
ditions, if we consider the tangent plane at each point as indeterminate. But a nodal
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curve will be an irrelevant solution, unless it has the singularity in question on one or
other of the two sheets. A cuspidal curve may yield us the true solution.

Now it is easily proved that the osculating plane of a curve traced on a surface
will coincide with the tangent plane to the surface when it touches one of the inflexional
tangents, and only then. The osculating planes of the curve we are discussing will,
therefore, be the tangent planes to the surface at the points where they osculate the
curve, -

‘Thus the singularity under discussion consists of a cuspidal curve, such that the
osculating plane at every point of it touches the surface at that point. The corre-
sponding singularity on the reciprocal surface is of the same kind. v

§ 87. To prove this write the equation to the surface (multiplied by a factor, it may
be) in the form Ap? = w®, A, p, ¢, ¢ being functions of =, v, 2, such that ¢ = =0
are the equations to the cuspidal curve.

Put

¢+ ph=1t,
then
, Y=, =M

Suppose now that

b=z+ ¢+ s+ ...

¢, and y, being homogeneous in 2, ¥, « and of the degree 7.
Then we may deduce expansions for ¥ and z in ascending powers of ¢ and z as
follows—

y=at’+ BB+ ...

+x(yt2-|—)

+at (04> +...)...
z=a >4 Bt ...

+a(r+..)

+22 (@4 )+ B+,

the first power of ¢ being absent throughout.

More generally, we have in the neighbourhood of a cuspidal curve (¢ = 0) expansions
of the form ‘

x = xy -+ to; + Py ...
y;yo+ty1+t2y2+...

w = wy -+ tw; 4 w, + ..
MDCCCXCV,—A., 4 A
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where 2y, ¥, ... #;, ¥, . .. are functions of a second variable u, such that all the deter-
minants of the matrix

@y, Yy 2

Loy Yos 0 Wo

’ 7 o 7 / ;
Lo s Yo %0, Wy |

vanish, dashes being used to indicate differentiation with respect to u, and dots
differentiation with respect to .
If & v, {, w are the determinants of the matrix

x, Y, ¥, w |
T, Y, z, w |’
’

’ ’ /
x,y, 2, w

then the reciprocal surface is the locus of (&, ), {, ).
We will now find whether the curve ¢ = 0 on the reciprocal surface can be cuspidal.
If & 9, {,  are expanded in powers of ¢ we have at once & =0, 9, =0, {, =0,
w, = 0, & denoting the coefficient of #" in & and so on.

We also find

wy &+ Yy m +‘ZO L+ wy 0, =0,

2y Eo+ Yomy + 2 b+ wywy =0,

'+ Yo+ 26 + w)'e, = 0,

x)' &+ Yo s + 2 G+ w)wy, = 2 [ %o s Yo's 2o s Wy E = 24A,, say.
| Loy Yo, % Wy
| g, Yy, Zgy Wy

|

"1"]‘/7 ?/1/7‘ 21/: w].,
and hence, differentiating the first and using the third,

xoé) + yom' + 2l 4wy, = 0.

Also .
xy &+ Yo m A 2 G w e = 2 I 2”5 Yo' %5 wo' | = — 24, say,
| %y Yoo %o Wos ‘
t Ty, Yoy Py We |
;. 930/, yof’ 20,9 ’wol’ l
so that

w2 & yom' 2L 4 wy'e) = 2A.
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If A, p are quantities such that

w = Ny + ', Yy = My + pyos ete.,

then it is clear that A; = uA.
Hence, if A = 0, all the determinants of the matrix

fl: M Cla ) l
527 N9 gg, Wy VaniSh.

gll’ 7}1/: Cxl, 0’1/

This is the condition that the curve ¢ =0 should be cuspidal on the reciprocal
surface, for the common factor ¢ has to be taken out of the expressions for & 7, {, o,
and the expressions for the coordinates become

f/tzfl—l-fgt—!-...etc.

We find, moreover, that
2085 + Yoms + %ls + wewy = — pfA =0,

so that the reciprocal surface satisfies the condition

! E My G oy ;
| STH CDV @ = 0,
gil’ "71,> Z1,7 w]/ ’
s "’hﬁa 4" o |
which is of the same form as A = 0.
Hence this singularity is of the same kind as its reciprocal. The tangents to a
curve of this kind are true bitangents to the surface, since they meet it in four

consecutive points, and their reciprocals meet the reciprocal surface in four consecutive
points. : * '

Lastly the condition A = 0 is that which must be satisfied if the tangent plane to
the surface, namely

L, Y, z, w

C T Yoo Fy wy =0,
% 4 - an !
Yoo Yos Zo, Wy

Loy Yo %9, W,y

coincides with the osculating plane of the cuspidal curve, that is
A2 |
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x, Y, 4 W
Tos Yoo Zp Wy | = 0.
I3 ’ ’

Los Yo %, Wy

144 144 144 144

| %os Yo %o Wo
This proves the theorem.
It is clear that the cuspidal edges of developable surfaces belong to this category,
and thus the second singular solution in Example I. is accounted for.

Lxample II1.  (§ 38.)

§ 38. As an example, we will take the system of lines represented by the differen-
tial equations r
Y1 =@+ 5y’
Yo = Pott + 1P

It will be more convenient to use ¥, z, p, ¢ instead of ¥;, ¥,, Py, P
The complete primitive is clearly

U= m - L8
Y = px -+ 3v°,

z = v + Fpo
The singular solutions are given by the system

xdu +v¥dv =0,
xdv+ pdu = 0.
We find
x = phv,
prdp 4 vdv =0,

2t 4+ L? = ¢, a constant.

Thus, for the first singular solution,
xd = 38 (2¢ — v?),
y = po+ B
= “1‘1‘2"1} (1 8¢ — 51)2), '

.’I}

‘z:ym—{—%p,?’:: 55(60—{—51/2).

By eliminating » from these equations we have the two equations to a curve
belonging to the first singular solution, that is to an envelope of the bitangeuts.
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If now we take the other value of x given by the quadratic a® = u»® we find for
the other point of contact

= — 28 (2c — 1Y),
y = — v (18c — 131?),
L
_ 2 - 2
= (6c — 1147).

The elimination of » from these equations gives the locus of the other point of con-
tact. '

There is no second singular solution.

The equation to the surface which has the lines for bitangents is to be found by

eliminating p, » from
’ = wt

y= e+
z=vx—+ Lp’
It 1s
312521 — 9000a7y2* + 810025 + 2592x'5 — 1944ady® — 2592x%%* + 648y*> = 0.

Any point of this surface may be represented by the coordinates
£ 1 &
<f) y2+3V: V§+2y4).
The direction cosines of the tangent plane are proportional to

3
<V3 — %s f, - Ilz)_
Hence if the line
y=rhkx+1

2= mxr+n
is a tangent to the surface at this point, we have

g :
SHiv =kE+L,

vé + 3;% = mé +n,

and therefore
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If the straight line is a bitangent, these equations are also satisfied when other
values &, v, are put in the place of §, v respectively.
Hence v and », are either the same root, or different roots of the equation

that is,
v =y,
or else
I/Vl 3
vy — =3y
+ 1 v+ v, 4110
and
3] )
vy 3
~ o A
T)J

Also &/v and £,/v, are either the same or are different roots of the equation

8 (élv)t — 2k (Efv) — 2n = 0,
in which case
f/” = — & /v,
or else
B+ 62 =
£’ = — .
The solution
v=u, £€=§
is irrelevant ; the solution

5

V=V g':""é'l

gives the original congruency, and

V=1, gz + 512 = %kvz
gives
f - f|-

A new series of bitangents is given by taking

§lv = — & vy, vFE w1
We have
V4o, + )t = dm (v 4 ),

v = = 3+ ),

3

Uy

]

=~
[
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whence
TN 4 9
5+ ) =307+,
or

Hence we deduce that

The elimination of & by help of the equation
3 (&/v)t — 2k (€/v)? — 2n = 0,

8192n (k* — 2n)* — 384km* (18n — k) — 243m® = 0.

gives

- These two equations, connecting %, /, m, n, define the second congruency of
bitangents to the surface.

A third is given by combining the equations

v v = dm (v + ),

vt = — 3l (v 4+ ),
&V + & = 3k,
&¢ 12/ ”21’12 = — §n,

4 bt = ke + 1,
Er + Jod = ke L

The result of elimination may be expressed by saying that the expression
256u° + 9u® (64im — m*) + 18u (21Pm? — ImP) — 91% (m?® — 8I)*

contains the expression :
27w — 2u (k% — 18kn) ~ 2n (k2 — 2n)?
as a factor.
The surface has a nodal curve and a cuspidal curve. These are found by expressing
the conditions that the equations
=t 4

z = v + Lot/

solved for », may have a pair of common roots.
If the roots are different we have a nodal curve, to wit, the eurve traced by the
point
40, 490, 49)
for different values of .
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If the roots are equal we have the cuspidal curve traced by the point
(855 lbOtQ 4058)

It is easily verified that the tangents to either of these curves are included in the
third congruency of bitangents to the surface, and that accordingly the curves will
satisfy the differential equations to that congruency.

The cuspidal curve on this surface has the property discussed above (§ 86), and it
is for this reason that its tangents are included among the bitangents to the surface.

Example IV.— Inflexional Congruencies. (§§ 39 to 50.)

 § 39. When the two values of de, : de, given by the equation db,dc, — de,db, = 0
(§ 28) coincide identically, the lines of the congruency are inflexional tangents to a
surface.

For if the direction-cosines of the normal to a surface at the point (z, y,, y,) are
proportional to 7, m, n, the directions of the inflexional tangents are given by the
equation

dadl + dy,dm + dy,dn = 0.

Hence, from the last equation of § 29, we find that the directions of the inflexional
tangents in that case are given by

d\dy, = dx (de; + ey + cyd)).
But the equation

KRS TR i
=2 +aozt
has equal roots, so that
o=—3(3+ ),
x%i’f=-%(2i )’

wdcz+db2_< +a )d jLaﬁozc1
8b2 (dol + Mdcy) .
Thus
ob,
dy, — cydx = 5o (dey, + Mdg,),


http://rsta.royalsocietypublishing.org/

s \
Vam \

a4
A A

THE ROYAL
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

A

%

S

JA \

THE ROYAL A
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

Downloaded from rsta.royalsocietypublishing.org

OF SIMULTANEOUS ORDINARY DIFFERENTIAL EQUATIONS. 553

and the above equation for the inflexional tangents becomes
| NG
(diyy — eydc) <a“ d\ — dm) — 0.
‘

Hence one of them is parallel to the plane y, = cy.

But it must lie in the tangent plane and pass through the point of contact. It is,
therefore, the line .
Y=oz + by,

Yo = ot + by,
which was to be proved.

It is remarkable that though from this point of view a congruency of inflexional
tangents appears to be a particular kind of bitangential congruency, yet when they -
are considered from the point of view of the surface, the one is as general as the
other, and every surface, whose degree is not 2 or 3, has one of each.

Degenerate Inflexional Congruencies. (§ 40.)

§ 40. An interesting question arises as to whether there is a degenerate form of the
inflexional congruency when the surface it envelopes is replaced by a curve. In such
a case the lines of the congruency that meet the curve at any one point will form a
cone, and the cones belonging to consecutive points of the curve must not meet each
other, for if they did they would envelope a surface, and the congruency would be of
the bitangential kind. The only kind of conical surface that will meet the case is
easily seen to consist of one or more planes touching the curve, and the congruency is
made up as follows : Planes are drawn through the tangents to a curve according to
some fixed law, and lines are drawn through the points of contact in each plane. The
planes will envelope a torse on which the curve will lie, and thus the congruency may
be said to consist of all the tangents to a surface at the points of a curve on that
surface.

The existence of these two kinds of congruency appears to have been overlooked in
the classification given by SarmoN (‘ Geometry of Three Dimensions,’ § 453). It
might also be desirable to break up the first category given there into two, the
bitangents to a surface and the bitangents to a torse, that is, the * lines in two planes”
of a curve. The third category would then have to be divided into three, according
as one, each, or neither, of the surfaces was developable, and the fourth into two.

Consideration of the General Surface. (§§ 41-45.)

§ 41. Take the surface

v @y, y)=0 . . . . . . . . . . (1)
MDCCCXCV.—A., 4 B
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The line
ylzclw—l—bl}. e (2),

Yo = o + by
will be an inflexional tangent if the equations
M =0, oM/op =0, 0°M/ou®=0,
are satisfied together, where |

M= (p, cypp + by, cop + 1?).

By eliminating w and putting p, for ¢, g, — pax for b, &e., we have two
equations of CLAIRAUT’S form satisfied by the lines of the congruency.
§ 42. For the singular solutions we have

xde, + dby =0 . e (4).

wdey + dby =0 . . . . . . . . .. (5)
oM cM oM oM : oM
a—CI‘ (/l(/‘l + 8‘02— dcg —]'- Bbl dbl -+- abg CZZ)Z == O, <because @ = O> A R (6),

M M oM . M, oM
6,&,8@1 CZCI + é/‘;a% CZ(}g + a-/;gz‘]‘; ClZ)l + a’/}/—a}g dbz == O, <bGCdUSG a,wz = 0) . (7),

M oM oM M oM
M CZCl + mdcg + bpﬁabl Cll)l + a,uﬂaé; ({bg + 'aF Cl[.L =0 . . . . (8)

But
M M M oM

e = P e, =,

Hence, by help of (4) and (5), (6) gives

oM oM
(w — ) {861 dey + 5 dcz} =0,
and (7) gives ‘
r M 0°M 1 oM oM
-— R P T 2. e, - - 4 - .
(p — ) 5 3, de, + o 0, d%j’ -+ o, de, o, dey = 0
Therefore '
oM oM

A de, + 55;0102 =0,
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and either
oM
p=ooor an 0, de, -+ 8 ab dcz_O

Also (8) becomes
M e dey} 42 {20 e 4 O M =0
(e w){“ 20b, ’1+628b 62}"" {a o, +a 257 2}_{"873 po="

§ 43. First, let u = 2. Then

M=¢(oc Y1, Yo) = 0,
BM o 04) agb .
" ax : o, =0,

e S )

o 0P
ot y+22a%a +1‘" +2128

M | OM i _ 0 dey 0 doy _
b, de " b, dz Oy dw T Oy, duv

P60
o T gy

= 0,
= 0.

The last equation and the equation (8) are satisfied in virtue of the first three and
the equations p, = ¢,, p, = ¢,.

The integral of these equations represents a series of curves on the surface ¢ =0,
each Langent to each curve being an inflexional tangent to the surface.

Second Singular Solutions. (§§ 44, 45.)

§ 44. If there is a singular solution of these equations, it is given by supposing two
consecutive curves of the series to intersect. At their point of intersection the
inflexional tangents will then be in the same direction, and the singular solution
therefore appears to be the locus of parabolic points on the surface. We shall,
however, find that this curve is not a solution at all in general. The consideration of
the reciprocal surface suggests that a cuspidal curve may supply a solution. We
begin with the parabolic curve.

We take, as a trial solution,

>¢ k) a“qb _ %
02 + ¢ 18:08J +e 2010 Ka;cf ?
¢ CR __3_243, __ 0
dedy T Vo T B0, T Rop
D¢ b Pp _ 0P
o Oy, T o ay Yo + o oys® Kayg :

482
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In order to test whether this is a solution, we differentiate totally, multiply by
1, ¢, ¢,, and add, and we have

0 0 CAE: 0 dey 0 0
<5;+-29155/;+P25;/;> (5;4-01@14- >aﬁ> ¢+ ; qb—l- ai 0,
where the dashes outside the brackets indicate that in differentiation ¢, and ¢, are to

be treated as constants.

In this equation the substitution p, =¢,, p, = ¢, will make the coefficient of «
disappear, but the other terms will generally not vanish, and therefore the locus of
parabolic points is not generally a solution of the differential equations of the
congruency.

It is, in fact, generally speaking, the cusp-locus of the first singular solution.

§ 45. Suppose, now, that the surface has a cuspidal curve. It may be shown that
this is a solution.

For at any point (x, %, ¥,) on the surface, the equaticns

y =@ + by, Yo = Gy -+ Dy,
M=o, oM/ou =0, O*M/op® = 0

are satisfied by putting
p= %, by=y, — e, by =y, — oy

if ¢}, ¢, are determined by the equations -

0% 0% P 2
20 5 - + 2 387@8}/2 + ¢ o + 2¢,c, 5 on, + ¢, Sy =

From the latter may be deduced, by differentiation, on the supposition that
dx = dy,/e; = dy,/c,, which is consistent with ¢ = 0, that

de, acl o, a’¢ o0
<3°3+ L Oy, +025y> ¢+2< tag, T 2a?/)<a»aj+ 1558+ O za/lf%)
oc ooy oc, ¢ *p 82¢>
T 2< 2 + clayl T a./z><a7"a!/ T 13J19./ to 2 > 0. - (9)

The equation (9) holds all over the surface.
Now, at a singular point where there are two coincident tangent planes,
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and

0 0 “0\2
<?+°1éz,;+czé%> ¢

is a perfect square, so that the first equation for ¢, and ¢, is nugatory, and the second
may be written in any of the forms

) P P _
0a® T laa,BJ +o 28%8/

0 ¢ *¢
dway, T gy T 05,5, =%
d PP *p —o

O Oy, +o L Oy, s + 23?}

The equation (9) will therefore not contain the differential coefficients of ¢, and ¢,
but will be available to determine ¢, and ¢, themselves.

If there is a cuspidal edge these things hold at every point of it. Let m,, m, be
the values of p,, p, taken along the edge, and let us write D for the operator

0 0 0
Also we may put

Py o P ¢ , ¢ ¢

e . A I TP _ .2
Rk A% dedy, = My, 3y = Ay, EE = 5 Iy P gy = e
The equations giving the inflexional tangents are then

A ppy + pepe = 0.

¢ ¢ L P PP P
s plaxgay + szaxgaj +3ps° aan + plpzaacBJ 0y, + 3py° 02:0y,?
¢ ) PP _a_jz
+p/° 8y5+ Plpzayoa?/ + 3p.pg° o, ay2+]z e = 0.

We shall show that these two equations will, if p;, p, are considered as coordinates,
represent a plane cubic and one of its inflexional tangents.

We have
2,
D %—4; = 2\ DA, &c.
49
Thus,
P P o 0> ¢ p %%
D +2 1 ay;+2m2 ¢+ QD ¢+2m1m2 a a —|— 5;;2
=2\ + mm, + Hzmz) (DA + my Dpy + my Dpsg)

= 0,
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for the first factor clearly vanishes, since N\, u,, p, arve proportional to the direction
cosines of the tangent plane. ‘

Also
a.
,,,,, + (my + p) D 578%1 + (my + py) D

+ (mypy + myp,) Daj " + myp, D P
= (M + pymy + pgmy) (DA + py Dy 4 py Do)
+ A+ Py + pepy) (DN A my Dy + my Dpg)
= (M + py + popy) (DN + my Dy + my Dpsy),

and

e % ao¢ 79 ¢ | P ¢
chan Do, T Dan +eiDas+2em by o +eiD s

= (}\ + ppy -+ M‘QPQ) (DN ++ py Dy A4 py Dpg).

Thus the point (2, m,) lies on the cubic, its polar line is N + u,p; + pyp, = 0, and its

‘ polar conic consists of this line and another. Hence the three solutions of the two

equations coincide, and we have p; = m,, p, = m,.

Thus the cuspidal edge is enveloped by the inflexional tangents, and is a solution
of the differential equation of the congruency.

If the surface has a nodal curve the equations M = 0, oM/ou = 0, 0°M/ou® = 0 are
apparently satisfied along it, but these equations, as they stand, are not enough to
determine ¢; and ¢,, and when ¢, and ¢, are evaluated by means of another differen-
tiation they are not generally equal to p, and p, taken along the nodal curve. In
fact there are two inflexional tangents in each sheet at every point, and the tangent
to the nodal curve is not generally the same as any of the four. Hence the nodal
curve, as such, is not a solution.®

Another Second Singular Solution. (§ 46-49.)

§ 46. Let us now take the alternative of § 42 and suppose that

o°M 0*M
duan, 1 T gum, =0

* The lines that touch the surface at points on the nodal curve form such a degenerate inflexional
congruency as was discussed above (§ 40), and they will satisty the differential equations to the inflex-
ional congruency of the surface in the unreduced form in which we have used them. The tangents to the
nodal curve form a first singular solution included in the complete primitive, and the nodal curve belongs
to the second singular solution which also includes the cnspidal edge of the torse enveloped by the
tangent planes.
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Then as ¢, and ¢, are not both constant, we have N = 0 where

M oM oM oM

" Ou b, 0b, O b, (%? '

This is a further condition connecting by, b,, ¢, ¢y, p. From it we deduce

oN oN oN oN oN _
;a‘c:dCl -+ gc_z'dcg + ggdbl -+ a—b;dl)g-{— a; d[L = 0.
From this and the former equations we can again eliminate the differentials.
Suppose the resultant equation to be P = 0. Then the equations N == 0, P = 0 afford

an integral of the differential equations. We will verify this.
§ 47. N = 0 may be replaced by

oM oM
@ Oty =0

o*M oM
dua, 1 T duan, O = 0

where C, and C, do not both vanish.
Also P = 0 may be replaced by

‘ON oN\ /ON oN oN
@4-%@M+@@*%@%+$K*O--"<m%
M g OM o oM |
(u — ) o, C, + <p. — ao) S, C, + 5 K=0 . . . (11)

We have also M = 0, 0M/op = 0, 9*°M/ou? = 0.
The last three equations give

M/ , oM/ _,
abl“\ﬂ"l + bl>+ 55;(:“02"' bz> =0,

if we write ¢, for de,/dx, &c.
We may then put

pe'y 4 ') = uC,, ud'y + 'y = uQ,.
They also give '

M M, ,OM |, M
5;87); uCl -+ S;L’az; u(Jg + ¢ 1*8—1): +c 9 552‘ =0,
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so that we may put
: =00, ¢y = 00,

by = (u— uw) Cy, V'y = (v — o) C,

Further, they give

M OM M M M,
o, Ot G, VO B, MOt 25 Ot g =0

Whenoé, by comparison with (11),

uK = (u — ) p'

Again, since N = 0,

oN oN oN oN ON «XK

a-él-@Cl -+ = vCy + 3, (v — w) C, + éa(v,L —w) C, + o /:Lm - =0.
Multiply this by w — « and (10) by « and subtract.
The equation connecting « and v is then found to be

N L N N AN\
== (5 Ot ) Compfy O = gy ) =0,

Thus in general v — uv= —ovx, that 1s, @+ 0, =0=cw+ b, and the

differential equations are satisfied.
§ 48. In the case when N = 0, P == 0, we still have

dey 1 dey 2 Cp i Cyiidby : dby,

but the ratio de, : db, is unassigned.
The equation to the tangent plane to the surface at

(s Crp =+ Dy, cop + Dy)
is, as always, ; .
M M
(3/1" O — Z’l)a—bl + (93 — cgr — bz)-agg= 0.

Hence, when N = 0, the tangent plane at any adjacent point is

oo, e _
(3/1"‘019‘5“‘61)<abl +d abl>+(?/2_02“"‘bz) <8b2+dabg)"0'

Thus the tangent planes at all adjacent points pass through the same straight line

n=cx+h .
Yy = G + by
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Hence the point is a parabolic point on the surface, and the line of the congruency
is the intersection of tangent planes at two consecutive parabolic points. All such
lines will generate a torse, and they would belong to the first singular solution were
they not already in the complete primitive.

§ 49. The intersection of two consecutive genmatms of this torse is given by the
equations

Y = o + by,
Yo = oy + by,
x = — db,/dc, or — db,/dc,,

where b, ¢;, by, ¢, are connected by the equations
M =0, oM/op = 0, o*M/op? = 0, N = 0.

These equations are satisfied if P = 0, and therefore the cuspidal edge of this
torse is the second singular solution given by taking N = 0 = P.

A Particular FKeample.  (§ 50.)

§50. As an example of an inflexional congruency, we may take the system
of lines |
y = 3afblx + § 0% (1 — 6a®),
z="0"(1 + 20%) © — 3 o*b.

These are half the system of inflexional tangents of the surface of § 38.

It is easily verified that the cuspidal curve is a second singular solution, and the
nodal curve not.

The first singular solution is given by

x = ab® b = constant.
It is
3
&
— 1
Y= + 307,
. "
I 3
v=4%n+ bx .

The system
y=(1+ )b =30,

v = 20% + L a*0® — alb®,
MDCCCXOV.,—A. 4 C


http://rsta.royalsocietypublishing.org/

Ja \

A

THE ROYAL A
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

)
A

fa \

/,
/

S

a

THE ROYAL
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

Downloaded from rsta.royalsocietypublishing.org
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which includes the other inflexional tangents to the same surface, would serve
equally well.

This example shows that it is possible for the inflexional tangents to a surface to
form two distinct congruencies. The parabolic and cuspidal curves, moreover,
coincide.

Example V.—System of Curves in Space. (§§ 51, 52.)

§ 51. As another example, take the equations

de* dy? dz?
=1 P =1 ¢

The complete primitive is the result of eliminating ¢ from

1 I 1
2 =1+ -, y=at+ —, 24__1)1‘,—}-52,
a and b being the constants of integration.
The curves represented are conics touching the six planes
r=41, y==+1, z=41.
The first singular solution includes six forms—
=41 2-—u+‘-—1- 2% = ¢ L,
- 7 y= w ' = o+ cn’
=41 22 = u L 20 = L,
y= ’ =ut o

1 1
z = 4+ 1, 20 =u + — , 2y = cu 4+ —;
u - cu
in each u is a variable parameter, and ¢ an arbitrary constant. The curves repre-
sented are conics inscribed in the six faces of the cube contained by the planes

=41, Y= 41, 7= 4 1.

The second singular solution consists of the twelve edges of this cube.
§52. If we seek the singular solutions by means of the differential equations, we
take
PP —1)— (" =1)=0,
P —1) —(z* —1)=0,

and form the Jacobian with respect to p and q.
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We thus find
pq(#* — 1 =0,
whence
r=+4+1, ory=41, orz= 4 1.

Any one of these is found to be a singular first integral, and to reduce the equations

to one of the form
PP —1)=¢y*—1,

which we have seen how to integrate.
The singular solution of this is again

(28 — 1) (g — 1) = 0.

System of Plane Curves.  Another extension of CLairaut’s Form. (§§ 53-55.)

§ 53. There is an extension of CLAIRAUT’S form to higher orders, with one dependent
variable.
Write p, for dry/da’, so that p, will mean ¥.
Then integration by parts gives (r being (/\n),
fp,mw’“ de = ap, — 1€ py+r(r = 1) p s . F (= 1) rtp, .

Call this expression ¢,, and take the equation,

d) (QO’ 9 9o+ - - qﬂ) = 0.
This may be solved at once by differentiating ; siuce

dgr/dw == ‘rjvrpn+ly

op
891

we have

n

0 0 0
MH{gfo-l-m +w252—;+. L +90"a-(/>—} = 0.

The first factor gives the complete primitive, which consists of the equations,
Qo= Qg 1=+« o Qo= Uus
where g, @, . . . @, are constants, connected by the relation

_ . & (0, ay, . . . ay) =0,
but otherwise arbitrary.

The value of y may be found as follows—in the equation
X" = Pt = P T (= 1) pg T L
take differences with respect to 7 ; thus

Ao, = (= 1Fs! @ p,,+ (= 1) 2.8, .. (s+Dra" " p,_ i+ ...
4¢2
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564 PROFESSOR A. C. DIXON ON THE SINGULAR SOLUTIONS
Put now s = n, » = 0, and we have finally
(—1paly=Aa2"" =, —na, .+ TR s 2 (= 1),
the constants being connected by the relation
¢ (ag, Ay, . . . at,) =0,

a_‘é ,ai u@g
aQo+m891+.” T 0gn

§ 54. The factor

equated to zero, leads to the singular solutions, the first integral being found by
elimination of p, from ¢ = 0 by means of it.

Thus the solution of ¢(qy, ¢;...9.) =0 is exactly on the lines of that of
Y (zp, — v, p;) = 0, which is CLATRAUT’S form.

§ 55. The equations to be integrated in finding the singular solutions are

doy _ doy _ day o e
= t= == (= =),
day,  da,  da, de,
b (g, v v .oa,) = 0.
For example, when n = 2, we have
2

da,? = da, da,,

b (@, @, ) = 0.

If (ag, @, a,) are taken as Cartesian coordinates, the solution represents curves on
the surface ¢ = 0, the tangents to which are parallel to generators of the cone
a® = aya,, that is to say, meet a certain curve at infinity. The second singular
solution is given by forming the eunvelope of such curves, which does not generally
exist, but may in particular cases.

Example VI. (§ 56.)
§ 56. As an ex@mple take the equation

(2ypy — p*)* = 4py (p1 — xpo)?, or (qygs — ¢*) + 49q,> = 0, » being 2.
The ccmplete primitive is
dacdy = 1 4 2¢ + da’Pr + 4otz
The equations giving singular solutions are

(1 4+ 6a*cPx). da + 6a’c*x . dc = 0,
' 1+ 2¢ 3+ de
o= L2 gy - By,
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The result of eliminating  is
da? 4+ 3 (cda 4+ ade) { (1 4 2¢)cda + (3 + 4¢)ade} = 0.
The complete primitive of this is
oa? — baclo — Galcd = 0,
and for the singular solution of it we must take
o= 3ac® = — 2ac.

The solutions o = 0, ¢ = 0 arise by giving « the particular value zero, and the
true singular solution is
2+ 3¢ = 0.

Hence for the first singular solution

a? — 6ace — 6a’c® = 0,

alxy — 3o’ + Bay — 1 =0,

For the second
x = vy
This is the equation to a parabola.

The curves of the first singular system are hyperbolas, having their asymptotes
parallel to the axes of coordinates and having contact of the second order with this
parabola.

The complete primitive represents a series of parabolas with axes parallel to
the axis of y, and each having contact of the second order with some one of the
hyperbolas, and, in fact, with two of them, since « is given in terms of @ and ¢ by a
quadratic equation.

§ 57. In order to make up further examples we only need to take :—

(1.) A curve A.

(2.) A series of curves A,, depending on one parameter, each having contact
of order n with the curve A.

(3.) A series of curves A,, involving two parameters, each having contact of
order n with some one of the curves A,, and so on, till we have a series of curves A,,
involving 7 parameters, each having contact of order » with some one of the
curves A,_,.

Then A, is the complete primitive of a differential equation of order n, A,_, will
be a first singular solution, A, _, an »" singular solution.
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